Name			

Date_____

Lab Activity: Density Cubes

Period_____

Materials:

- 1 Metric Ruler
- Lab Notebook
- Triple Beam Balance
- Patience

Table 1

Cube Number	1	2	3	4	5	6	7	8	9	10
Height										
Width										
Length										
Volume										
Mass										
Density										
Identity										

Procedure:

- 1) Measure the height, width, and length of a cube. Record this information in **Table 1**.
- Using the Triple Beam Balance obtain the mass of the cube. Record this information in Table 1.
- Calculate the volume of the cute. (Remember that V=LxWxH). Record this information in Table 1.
- 4) Density is calculated like this:

Density = Mass of an object ÷ Volume of that object

Shorthand \rightarrow D = M/V

- 5) Calculate the density of each cube. Record this information in Table 1.
- 6) Identify the material that each cube is made from using the following table. Record your answer in **Table 1**.

Material	PVC	Nylon	Brass	Copper	Aluminum	Acrylic	Oak	Pine	Poplar	Steel
Density	1.39-					1.16-	0.60-	0.35-	0.35-	
	1 1 2	1.13	8.0	9.0	2.7	1 10	0.00	0.00	0.50	7.6
	1.42	σ/cm^3	σ/cm^3	σ/cm^3	g/cm ³	1.19	0.90	0.60	0.50	σ/cm^3
	g/cm ³	б/ cm	6/ CIII	5/ CIII		g/cm ³	g/cm ³	g/cm ³	g/cm ³	<i>в</i> / сп

Analysis Questions:

- If "mpg" means miles you get per gallon of gasoline and "mph" means miles traveled in an hour, what does g/cm³ (read as grams per cubic centimeter) mean?
- 2) What material has the most amount of matter? Explain your answer.
- 3) Which material has the least amount of matter? Explain your answer.
- 4) If one cm³ is equal to one mL, calculate the density of a half-liter bottle of water has a mass of 500g. (NOTE: Remember there are 1000mL in 1L)

MAKE SURE YOU ANSWERED EVERY QUESTION. KEEP THIS IN YOUR LAB NOTEBOOK!

5) Create a BAR graph showing the densities of the objects.