

Activity 2: Volume of Solids

Name Date Class

Key Question

We Think

1. What method could you use to determine the volume of the solid block pictured at the right?

Explore Your Ideas

Experiment 1: How is using an equation to calculate the volume of a rectangular solid the same as counting the number of standard-unit cubes that fit inside the solid?

Table 1: Counting and Calculating							
Counting 1-cm cubes	Cubes in One Layer		Number of Layers	Volume (cm³)			
				cm ³			
Using an Equation	Width (cm)	Length (cm)	Height (cm)	Volume (cm³)			
	cm ³	cm ³	cm ³	cm ³			

Experiment 2: Using an Equation to Calculate the Volume of a Solid

Table 2: Measured Volumes of Solids							
Solid Cube	Width (cm)	Length (cm)	Height (cm)	Volume (cm³)			
Team Member 1	cm	cm	cm	cm ³			
Team Member 2	cm	cm	cm	cm ³			
Team Member 3	cm	cm	cm	cm ³			
Team Member 4	cm	cm	cm	cm ³			
Volume Best Value: cm³							
	cm ³						
Rectangular Solid	Width (cm)	Length (cm)	Height (cm)	Volume (cm³)			
Team Member 1	cm	cm	cm	cm ³			
Team Member 2	cm	cm	cm	cm ³			
Team Member 3	cm	cm	cm	cm ³			
Team Member 4	cm	cm	cm	cm ³			
Volume Best Value: cm³							
Uncertainty: cm ³							

Our Consensus Ideas

The key question for this activity is:

How are the volumes of cubes and rectangular solids measured?

Record the class consensus ideas.