	Activity 7: Calculating Density	
Name	Date	Class

PRACTICE

Short Answer

For the problems below, *show your work* and *use the correct units*. Refer to the shortened Table of Densities at the end of this practice.

(Questions 1-3) Suppose you had a rectangular block of shiny gray metal that was 3 cm wide, 2 cm high, and 4 cm long. The metal block has a mass of 252 g.

1. What is the *volume* of the metal block? Show your work.

2. What is the *density* of the metal block? Show your work.

3. What type of *metal* is the block probably composed of? Use the *Table of Densities*.

(Questions 4-6) Suppose that you are conducting an experiment in which you are trying to identify the metal out of which a small toy soldier is made. Using a balance, you determine that the mass of the toy soldier is 75.4 g.

To find the toy soldier's volume, you use the water-displacement method, filling a graduated cylinder half full of water. You measure the water volume and find it to be 52 mL (= 52 cm^3). Then place the toy in the cylinder so the water completely covers it. The combined volume of the water and toy soldier is 65 mL.

4. What is the *volume* of the toy soldier? Show your work.

- **5.** What is the *density* of the toy solider? Show your work.
- **6.** What *metal* is the toy soldier probably composed of? Use the *Table of Densities*.

Table of Densities* (Remember that 1 mL = 1 cm ³)		
Material	Density	
Solids		
Aluminum	2.7 g/cm ³	
Silver	10.5 g/cm ³	
Steel	7.6 g/cm ³	
Tin (grey)	5.8 g/cm ³	
Liquids		
Acetic Acid	1.05 g/mL	
Mercury	13.0 g/mL	
Rubbing Alcohol	0.79 g/mL	
Salt Water (saturated)	1.20 g/mL	
Water	1.00 g/mL	

* Approximate values at sea level and 20°C.

Multiple Choice

(Questions 7-9) You will need to use the Table of Densities above to answer the questions below.

- **7.** Suppose you conduct an experiment to identify an unknown clear liquid. You determine that 100 mL of the liquid has a mass of 120 g. What might the clear liquid be?
 - a) rubbing alcohol
 - **b)** acetic acid
 - c) water
 - d) salt water
- **8.** José has three blocks of shiny gray metal. He is trying to determine which block, if any, is made of steel. All three blocks have a volume of 20 cm³. The first block has mass of 210 g; the second block has a mass of 54 g; and the third block has a mass of 106 g. Which block, if any, is probably made of steel?
 - a) block with a mass of 106 g
 - **b)** block with a mass of 54 g $\,$
 - c) block with a mass of 210 g $\,$
 - d) None of the blocks is made of steel.
- 9. Which of the following liquids has the largest mass?
 - **a)** 10 cm^3 of mercury
 - **b)** 50 cm^3 of salt water
 - c) 75 cm^3 of water
 - **d)** 100 cm^3 of rubbing alcohol

© It's About Time